Group Meeting Slides for Michael Ehrlichman

2) Comments on Pinged Optics Calculation 1) OSC Bypass Beam Envelope

Equation for Envelope

Beam distribution in x, x' is given by,

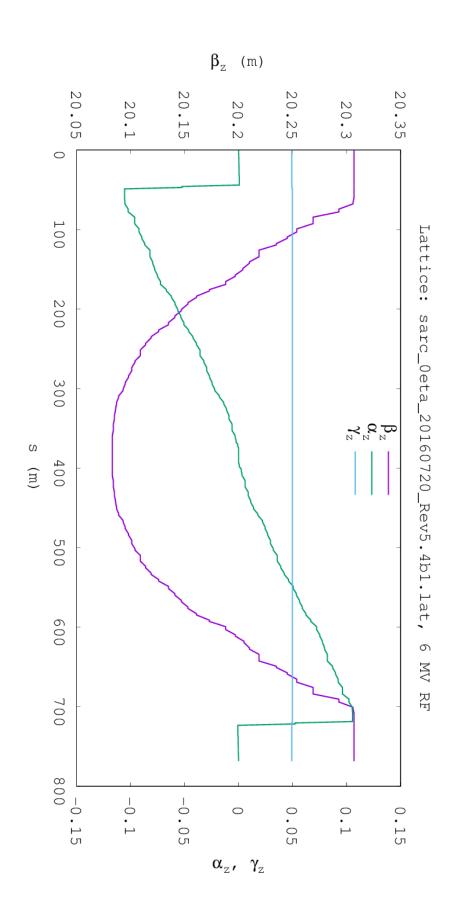
$$\rho\left(x, x'\right) = \frac{1}{2\pi\epsilon_x} e^{-\frac{J_x}{\epsilon_x}}$$

where,

$$J_x = \frac{\gamma_x x^2 + 2\alpha_x x x' + \beta_x x'^2}{2}$$

Beam distribution in $\bar{x} = (x, x', y, y', z, z')$ is given by,

$$\rho\left(\bar{x}\right) = \frac{1}{2\pi\epsilon_x \epsilon_y \epsilon_z} = e^{-\frac{J_x}{\epsilon_x} - \frac{J_y}{\epsilon_y} - \frac{J_z}{\epsilon_z}}$$

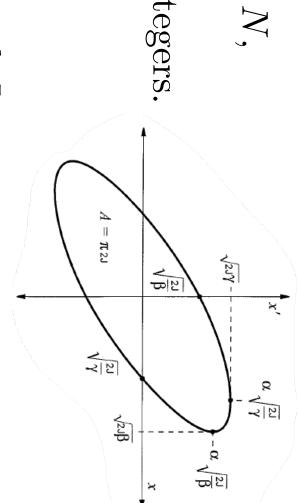

The N- σ beam envelope is given by \bar{x} solutions to

$$-\frac{J_x}{\epsilon_x} - \frac{J_y}{\epsilon_y} - \frac{J_z}{\epsilon_z} = N$$

Longitudinal Twiss Parameters

which also gives us Twiss quantities for z. These are obtained from decomposition of 1-turn matrix, β , α , γ , and ϵ are common quantities for x and y.

•I take $\beta_z = 20.2$, $\alpha_z = 0$, $\gamma_z = 1/\beta_z = 0.05$ as constants. $\epsilon_z \equiv \sigma_z \sigma_p = (1.5 \text{cm}) (7.6 \times 10^{-4}) = 1.17 \times 10^{-5} \text{ m}$



Build max xyz' envelope

Pick all sets of (n_x, n_y, n_z) that satisfy,

$$0.1n_x + 0.1n_y + 0.1n_z = N,$$

where the n's are positive integers.

Using

$$J_x = 0.1n_x$$
, $J_y = 0.1n_y$, and $J_z = 0.1n_z$,

build initial (max xyz') particle distribution from,

$$z = 0$$

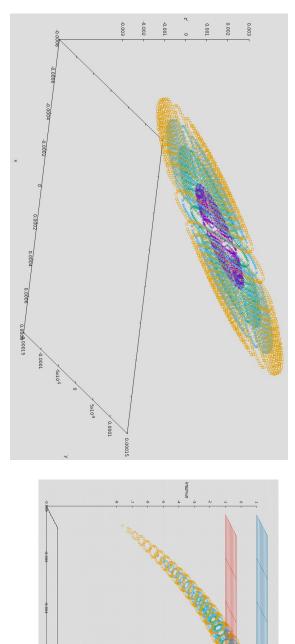
$$x = \pm \sqrt{2J_x \beta_x} + \eta_x z'$$

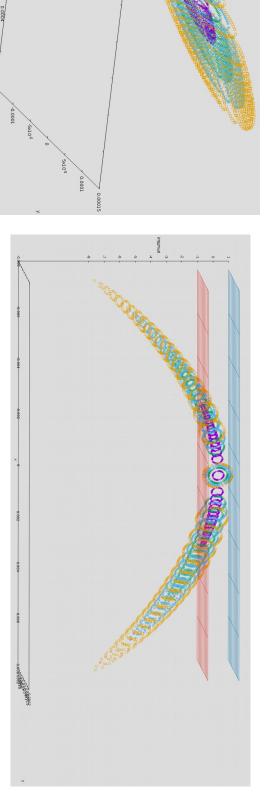
$$y = \pm \sqrt{2J_y \beta_y}$$

$$z' = \pm \alpha_x \sqrt{2J_x \gamma_x} + \eta'_x z'$$

$$y' = \pm \alpha_y \sqrt{2J_y \gamma_y}$$

OSC Bypass Issues


- Need to consider sextupoles?
- Need to remove Quad moment from Dipoles?
- Matching into CHESS-U optics.


Envelope Tracking

- $\varepsilon_{x} = \varepsilon_{y} = 50 \text{ pm}$
- 5.3 mm delay
- Examples are below, see accompanying gnuplot splot.

Bunch at pickup xyz' (z=0)

Bunch at kicker xyz (z' don't care)

Optics Measurement For OSC

- Tune tracker not expected to work at 500 MeV.
- Pinged beam phase measurement should work fine.
- Can develop TBT phase measurement into push-abutton tool.
- Will require project inclusing MS shifts to develop tool and establish comparable accuracy.

Comparing apFFT to cesrv phase meas. (vert)

- CTA_2085_12W_DMTL_V15M
- Between 0.59 and 0.57 mA, one bunch
- elog entry: "qtune to (221,240) kHz" = (0.5665, 0.6152)
- cesrv phase meas 20118 (Dec 2013) (phase at 0E minus 1W)
- Bmad is ideal lattice
- apFFT measurement shown is over 2000 turns

15834/35	15820/21	15812/13	15808/09	15806/07			
-55.9	-46.9	-41.0	-33.7	-30.7	TT Dr Amp		
1 mm	3 mm	7 mm	1.5 cm	1.6 cm	Osc Amp @2W		
.6130	.6134	.6144	.6193	.6197	ゴ		
.6130	.6134	.6144	.6193	.6197	NAFF	Full Tu	
.6139	.6135	.6144	.6193	.6197	apFFT	Full Turn (kHz)	
		.6289			Bmad		
.5602	.5605	.5618	.5662	.5665	арЕЕТ	0E mi	
		.5611			cesrv (data)	0E minus 1W (kHz)	
		.5780			Bmad		

Comparing apFFT to cesrv phase meas. (horiz)

- CTA_2085_12W_DMTL_V15M
- 0.59-0.57 mA
- elog entry: "qtune to (221,240) kHz" = (0.5665, 0.6152)
- cesrv phase meas 20118 (Dec 2013) (phase at 0E minus 1W)
- Bmad is ideal lattice
- apFFT measurement shown is over 2000 turns

		15836/37	15840/41	15844/45	15852/53	15856/57	
	TT Dr Amp	-48.4	-50.8	-53.2	-58.4	-60.9	
	Osc Amp @2W	4.5 mm	3.3 mm	2.0 mm	1.2 mm	0.9 mm	
Full To	⇉	.5688	.5685	.5683	.5682	.5678	
	NAFF	.5688	.5685	.5683	.5682	.5678	
Full Turn (unit)	apFFT	.5687	.5685	.5683	.5682	.5678	
	Bmad			.5639			
0E mi	apFFT	.3548	.3538	.3550	.3535	.3519	
0E minus 1W (unit)	cesrv (data)			.3546			
(unit) Bmad			.3631				